Search results
Results from the WOW.Com Content Network
The harmonic series is the infinite series = = + + + + + in which the terms are all of the positive unit fractions. It is a divergent series : as more terms of the series are included in partial sums of the series, the values of these partial sums grow arbitrarily large, beyond any finite limit.
The harmonic series (also overtone series) is the sequence of harmonics, musical tones, or pure tones whose frequency is an integer multiple of a fundamental frequency. Pitched musical instruments are often based on an acoustic resonator such as a string or a column of air, which oscillates at numerous modes simultaneously.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The harmonic numbers roughly approximate the natural logarithm function [2]: 143 and thus the associated harmonic series grows without limit, albeit slowly. In 1737, Leonhard Euler used the divergence of the harmonic series to provide a new proof of the infinity of prime numbers.
Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms. As a third equivalent characterization, it is an infinite sequence of the form 1 a , 1 a + d , 1 a + 2 d , 1 a + 3 d , ⋯ , {\displaystyle {\frac {1}{a}},\ {\frac {1}{a+d}},\ {\frac {1}{a+2d}},\ {\frac {1}{a+3d}},\cdots ,}
This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).
Download as PDF; Printable version; In other projects Wikimedia Commons; ... Harmonic series (mathematics) Harmonic series (music) This page was last edited on ...
The source of these ratios, in the pattern of vibrations known as the harmonic series, was exposed by Joseph Sauveur the early 18th century and even more clearly by Helmholtz in the 1860s. In 1965, Plomp and Levelt [ 1 ] showed that this relationship could be generalized beyond the harmonic series, although they did not elaborate in detail.