enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Replication crisis - Wikipedia

    en.wikipedia.org/wiki/Replication_crisis

    [h] The authors conclude that if replication is defined by a subsequent study finding a sufficiently similar effect size to the original, replication success is not likely even if replications have very large sample sizes. Importantly, this occurs even if replications are direct or exact since heterogeneity nonetheless remains relatively high ...

  3. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  4. DNA replication stress - Wikipedia

    en.wikipedia.org/wiki/DNA_replication_stress

    Replication stress and its consequences in mitosis. DNA replication stress refers to the state of a cell whose genome is exposed to various stresses. The events that contribute to replication stress occur during DNA replication, and can result in a stalled replication fork. [1] There are many events that contribute to replication stress ...

  5. G2-M DNA damage checkpoint - Wikipedia

    en.wikipedia.org/wiki/G2-M_DNA_damage_checkpoint

    Steps of the cell cycle. The G 2-M checkpoint occurs between the G 2 and M phases. G2-M arrest. The G 2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired.

  6. Slipped strand mispairing - Wikipedia

    en.wikipedia.org/wiki/Slipped_strand_mispairing

    Slipped strand mispairing (SSM, also known as replication slippage) is a mutation process which occurs during DNA replication. It involves denaturation and displacement of the DNA strands, resulting in mispairing of the complementary bases. Slipped strand mispairing is one explanation for the origin and evolution of repetitive DNA sequences. [1]

  7. DNA re-replication - Wikipedia

    en.wikipedia.org/wiki/DNA_re-replication

    The MCM complex is the DNA helicase that opens the helix at the replication origin and unwinds the two strands as the replication forks travel along the DNA. [5] Elevated CDK activity at the end of G1 triggers the firing of the origins and the dismantling of the pre-RCs.

  8. Spindle checkpoint - Wikipedia

    en.wikipedia.org/wiki/Spindle_checkpoint

    Once DNA replication has finished, in eukaryotes the DNA molecule is compacted and condensed, to form the mitotic chromosomes, each one constituted by two sister chromatids, which stay held together by the establishment of cohesion between them; each chromatid is a complete DNA molecule, attached via microtubules to one of the two centrosomes ...

  9. Meselson–Stahl experiment - Wikipedia

    en.wikipedia.org/wiki/Meselson–Stahl_experiment

    After one replication, the DNA was found to have intermediate density. Since conservative replication would result in equal amounts of DNA of the higher and lower densities (but no DNA of an intermediate density), conservative replication was excluded. However, this result was consistent with both semiconservative and dispersive replication.