Search results
Results from the WOW.Com Content Network
the inductance of a solenoid follows as =. A table of inductance for short solenoids of various diameter to length ratios has been calculated by Dellinger, Whittmore, and Ould. [18] This, and the inductance of more complicated shapes, can be derived from Maxwell's equations. For rigid air-core coils, inductance is a function of coil geometry ...
If the current is decreasing, the voltage is positive at the end through which the current leaves the conductor, tending to maintain the current. Self-inductance, usually just called inductance, is the ratio between the induced voltage and the rate of change of the current
A solenoid The longitudinal cross section of a solenoid with a constant electrical current running through it. The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it.
The solenoid can be useful for positioning, stopping mid-stroke, or for low velocity actuation; especially in a closed loop control system. A uni-directional solenoid would actuate against an opposing force or a dual solenoid system would be self cycling. The proportional concept is more fully described in SAE publication 860759 (1986).
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
That is, the back-EMF is also due to inductance and Faraday's law, but occurs even when the motor current is not changing, and arises from the geometric considerations of an armature spinning in a magnetic field. This voltage is in series with and opposes the original applied voltage and is called "back-electromotive force" (by Lenz's law).
Alternating electric current flows through the solenoid on the left, producing a changing magnetic field. This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states:
The power frequency and voltage are not self regulating. The generator is able to supply current out of phase with the voltage requiring more external equipment to build a functional isolated power system. Similar is the operation of the induction motor in parallel with a synchronous motor serving as a power factor compensator.