Search results
Results from the WOW.Com Content Network
Recognition of the hormone by an associated cell membrane or intracellular receptor protein. Relay and amplification of the received hormonal signal via a signal transduction process: This then leads to a cellular response. The reaction of the target cells may then be recognized by the original hormone-producing cells, leading to a ...
Endocrine signals are called hormones. Hormones are produced by endocrine cells and they travel through the blood to reach all parts of the body. Specificity of signaling can be controlled if only some cells can respond to a particular hormone.
The extracellular environment is able to induce changes within the cell. Hormones, or other extracellular signals, are able to induce changes within the cell by binding to cell surface receptors also known as transmembrane receptors. [5] This interaction allows the hormone receptor to produce second messengers within the cell to aid response.
The extracellular molecules may be hormones, neurotransmitters, cytokines, growth factors, cell adhesion molecules, or nutrients; they react with the receptor to induce changes in the metabolism and activity of a cell. In the process of signal transduction, ligand binding affects a cascading chemical change through the cell membrane.
The effect of a particular cytokine on a given cell depends on the cytokine, its extracellular abundance, the presence and abundance of the complementary receptor on the cell surface, and downstream signals activated by receptor binding; these last two factors can vary by cell type.
Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. [1] This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.
A prolactin cell (also known as a lactotropic cell, epsilon acidophil, lactotrope, lactotroph, mammatroph, mammotroph) is a cell in the anterior pituitary which produces prolactin (a peptide hormone) in response to hormonal signals including dopamine (which is inhibitory), thyrotropin-releasing hormone and estrogen (especially during pregnancy), which are stimulatory.
The biological effects produced by intracellular actions are referred as intracrine effects, whereas those produced by binding to cell surface receptors are called endocrine, autocrine, or paracrine effects, depending on the origin of the hormone. The intracrine effect of some of the peptide/protein hormones are similar to their endocrine ...