enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  3. Enthalpy–entropy compensation - Wikipedia

    en.wikipedia.org/wiki/Enthalpyentropy...

    In thermodynamics, enthalpyentropy compensation is a specific example of the compensation effect. The compensation effect refers to the behavior of a series of closely related chemical reactions (e.g., reactants in different solvents or reactants differing only in a single substituent), which exhibit a linear relationship between one of the following kinetic or thermodynamic parameters for ...

  4. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    A substance at non-uniform temperature is at a lower entropy (than if the heat distribution is allowed to even out) and some of the thermal energy can drive a heat engine. A special case of entropy increase, the entropy of mixing, occurs when two or more different substances are mixed. If the substances are at the same temperature and pressure ...

  5. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.

  6. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  7. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    is pressure, temperature, volume, entropy, coefficient of thermal expansion, compressibility, heat capacity at constant volume, heat capacity at constant pressure. Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials .

  8. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    If an infinitesimally small amount of heat is supplied to a system in a reversible way then, according to the second law of thermodynamics, the entropy change of the system is given by: d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\,}

  9. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    The third law of thermodynamics states: As the temperature of a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value. This law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute ...