Search results
Results from the WOW.Com Content Network
A typical plant cell may have between 1,000 and 100,000 plasmodesmata connecting it with adjacent cells [11] equating to between 1 and 10 per μm 2. [ 12 ] [ failed verification ] Plasmodesmata are approximately 50–60 nm in diameter at the midpoint and are constructed of three main layers, the plasma membrane , the cytoplasmic sleeve , and ...
Plant cells usually have thick cell walls which need to be crossed if neighboring cells are to communicate directly. Plasmodesmata form a pipe through the cell wall forming an ICC. The pipe has another smaller membranous pipe concentric to it connecting the endoplasmic reticulum of the two cells via a tube called the desmotubule. The larger ...
In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell (spermatozoon). [1] Once fertilized, the ovum becomes a single diploid cell known as a zygote.
conjugative - mediate DNA transfer through conjugation and therefore spread rapidly among the bacterial cells of a population; e.g., F plasmid, many R and some col plasmids. nonconjugative - do not mediate DNA through conjugation, e.g., many R and col plasmids. The pBR322 plasmid is one of the first plasmids widely used as a cloning vector.
Multinucleate cells (also known as multinucleated cells or polynuclear cells) are eukaryotic cells that have more than one nucleus, i.e., multiple nuclei share one common cytoplasm. Mitosis in multinucleate cells can occur either in a coordinated, synchronous manner where all nuclei divide simultaneously or asynchronously where individual ...
Structure of a typical animal cell Structure of a typical plant cell. Plants, animals, fungi, slime moulds, protozoa, and algae are all eukaryotic. These cells are about fifteen times wider than a typical prokaryote and can be as much as a thousand times greater in volume.
The term plasmid was coined in 1952 by the American molecular biologist Joshua Lederberg to refer to "any extrachromosomal hereditary determinant." [11] [12] The term's early usage included any bacterial genetic material that exists extrachromosomally for at least part of its replication cycle, but because that description includes bacterial viruses, the notion of plasmid was refined over time ...
Cell division is essential for an organism to grow, but, when a cell divides, it must replicate the DNA in its genome so that the two daughter cells have the same genetic information as their parent. The double-stranded structure of DNA provides a simple mechanism for DNA replication .