Search results
Results from the WOW.Com Content Network
The following circuit in bridged-T topology is a modification of a mid-series m-derived filter T-section. The circuit is due to Hendrik Bode who claims that the addition of the bridging resistor of a suitable value will cancel the parasitic resistance of the shunt inductor. The action of this circuit is clear if it is transformed into T ...
Smith chart with graphical construction for analysis of a lumped circuit. The analysis starts with a Z Smith chart looking into R 1 only with no other components present. As R 1 = 50 Ω {\displaystyle R_{1}=50\ \Omega \,} is the same as the system impedance, this is represented by a point at the centre of the Smith chart.
Capacitive coupling from high-voltage power lines can light a lamp continuously at low intensity. In its simplest implementation, capacitive coupling is achieved by placing a capacitor between two nodes. [1] Where analysis of many points in a circuit is carried out, the capacitance at each point and between points can be described in a matrix form.
Figure 1: Essential meshes of the planar circuit labeled 1, 2, and 3. R 1, R 2, R 3, 1/sC, and sL represent the impedance of the resistors, capacitor, and inductor values in the s-domain. V s and I s are the values of the voltage source and current source, respectively. Mesh analysis (or the mesh current method) is a circuit analysis method for ...
In electronic design automation, parasitic extraction is the calculation of the parasitic effects in both the designed devices and the required wiring interconnects of an electronic circuit: parasitic capacitances, parasitic resistances and parasitic inductances, commonly called parasitic devices, parasitic components, or simply parasitics.
The negative impedance converter (NIC) is an active circuit which injects energy into circuits in contrast to an ordinary load that consumes energy from them. This is achieved by adding or subtracting excessive varying voltage in series to the voltage drop across an equivalent positive impedance.
Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response. [ 8 ] [ 9 ] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent ; use of the theorem may in some cases be more convenient ...
Figure 2B shows a circuit electrically identical to Figure 2A using Miller's theorem. The coupling capacitor is replaced on the input side of the circuit by the Miller capacitance , which draws the same current from the driver as the coupling capacitor in Figure 2A. Therefore, the driver sees exactly the same loading in both circuits.