Search results
Results from the WOW.Com Content Network
Along with providing better understanding and unification of discrete and continuous probabilities, measure-theoretic treatment also allows us to work on probabilities outside , as in the theory of stochastic processes. For example, to study Brownian motion, probability is defined on a space of functions.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
The Boltzmann distribution, a discrete distribution important in statistical physics which describes the probabilities of the various discrete energy levels of a system in thermal equilibrium. It has a continuous analogue. Special cases include: The Gibbs distribution; The Maxwell–Boltzmann distribution; The Borel distribution
2.4 Calculating with probabilities. 2.5 Independence. 3 Probability theory. Toggle Probability theory subsection. ... Discrete and continuous random variables
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
One example of a situation in which one may wish to find the cumulative distribution of one random variable which is continuous and another random variable which is discrete arises when one wishes to use a logistic regression in predicting the probability of a binary outcome Y conditional on the value of a continuously distributed outcome .
A beta distribution with shape parameters α = β = 1 is a continuous uniform distribution over the real numbers 0 to 1. A beta-binomial distribution with parameter n and shape parameters α = β = 1 is a discrete uniform distribution over the integers 0 to n.
Markov chains can have properties including periodicity, reversibility and stationarity. A continuous-time Markov chain is like a discrete-time Markov chain, but it moves states continuously through time rather than as discrete time steps. Other stochastic processes can satisfy the Markov property, the property that past behavior does not ...