enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. List of order structures in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_order_structures...

    Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be

  4. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    A set with a partial order on it is called a partially ordered set, poset, or just ordered set if the intended meaning is clear. By checking these properties, one immediately sees that the well-known orders on natural numbers , integers , rational numbers and reals are all orders in the above sense.

  5. Duality (order theory) - Wikipedia

    en.wikipedia.org/wiki/Duality_(order_theory)

    In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P op or P d.This dual order P op is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in P op if and only if y ≤ x holds in P.

  6. Ideal (order theory) - Wikipedia

    en.wikipedia.org/wiki/Ideal_(order_theory)

    In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.

  7. Complete partial order - Wikipedia

    en.wikipedia.org/wiki/Complete_partial_order

    A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.)

  8. Hasse diagram - Wikipedia

    en.wikipedia.org/wiki/Hasse_diagram

    A Hasse diagram of the factors of 60 ordered by the is-a-divisor-of relation. In order theory, a Hasse diagram (/ ˈ h æ s ə /; German:) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction.

  9. Linear extension - Wikipedia

    en.wikipedia.org/wiki/Linear_extension

    Applying the order-extension principle to a partial order in which every two elements are incomparable shows that (under this principle) every set can be linearly ordered. This assertion that every set can be linearly ordered is known as the ordering principle, OP, and is a weakening of the well-ordering theorem.