Search results
Results from the WOW.Com Content Network
When determining the stability constants for ternary complexes, M p A q B r it is common practice the fix the values for the corresponding binary complexes M p′ A q′ and M p′′ B q′′, at values which have been determined in separate experiments. Use of such constraints reduces the number of parameters to be determined, but may result ...
The concentration of the species LH is equal to the sum of the concentrations of the two micro-species with the same chemical formula, labelled L 1 H and L 2 H. The constant K 2 is for a reaction with these two micro-species as products, so that [LH] = [L 1 H] + [L 2 H] appears in the numerator, and it follows that this macro-constant is equal ...
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek. Freezing point depression is a colligative property, so ΔT depends only on the number of solute particles dissolved, not the nature of those particles.
Note that this is also the result of an extrapolation to zero scattering angle. By acquiring data on concentration and scattering intensity, the Debye plot is constructed by plotting Kc/ΔR(θ) vs. concentration. The intercept of the fitted line gives the molecular mass, while the slope corresponds to the 2nd virial coefficient.
The binding constant, or affinity constant/association constant, is a special case of the equilibrium constant K, [1] and is the inverse of the dissociation constant. [2] It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as:
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
It is used in chemistry to keep track of the changes in amount of substance of the reactants and also organize a set of conditions that one wants to solve with. [1] Some sources refer to a RICE table (or box or chart) where the added R stands for the reaction to which the table refers. [ 2 ]