enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complementarity (molecular biology) - Wikipedia

    en.wikipedia.org/wiki/Complementarity_(molecular...

    A partner uses the same number of the bonds to make a complementing pair. [17] An IUPAC code that specifically excludes one of the three nucleotides can be complementary to an IUPAC code that excludes the complementary nucleotide. For instance, V (A, C or G - "not T") can be complementary to B (C, G or T - "not A").

  3. Base pair - Wikipedia

    en.wikipedia.org/wiki/Base_pair

    An unnatural base pair (UBP) is a designed subunit (or nucleobase) of DNA which is created in a laboratory and does not occur in nature. DNA sequences have been described which use newly created nucleobases to form a third base pair, in addition to the two base pairs found in nature, A-T (adenine – thymine) and G-C (guanine – cytosine).

  4. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    Each of the base pairs in a typical double-helix DNA comprises a purine and a pyrimidine: either an A paired with a T or a C paired with a G. These purine-pyrimidine pairs, which are called base complements, connect the two strands of the helix and are often compared to the rungs of a ladder. Only pairing purine with pyrimidine ensures a ...

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto the original strand. As DNA polymerases can only extend a DNA strand in a 5′ to 3′ direction, different mechanisms are used to copy the antiparallel strands of the double helix. [105]

  6. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    The double helical structures of DNA or RNA are generally known to have base pairs between complementary bases, Adenine:Thymine (Adenine:Uracil in RNA) or Guanine:Cytosine. They involve specific hydrogen bonding patterns corresponding to their respective Watson-Crick edges, and are considered as Canonical Base Pairs.

  7. DNA synthesis - Wikipedia

    en.wikipedia.org/wiki/DNA_synthesis

    Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing (adenine and thymine, guanine and cytosine) occurs naturally when hydrogen bonds form between the nucleotide bases.

  8. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    Base pair geometries. The geometry of a base, or base pair step can be characterized by 6 coordinates: shift, slide, rise, tilt, roll, and twist. These values precisely define the location and orientation in space of every base or base pair in a nucleic acid molecule relative to its predecessor along the axis of the helix.

  9. Chargaff's rules - Wikipedia

    en.wikipedia.org/wiki/Chargaff's_rules

    A diagram of DNA base pairing, demonstrating the basis for Chargaff's rules. Chargaff's rules (given by Erwin Chargaff) state that in the DNA of any species and any organism, the amount of guanine should be equal to the amount of cytosine and the amount of adenine should be equal to the amount of thymine.