enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.

  3. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    x erf x 1 − erf x; 0: 0: 1: 0.02: 0.022 564 575: 0.977 435 425: 0.04: 0.045 111 106: 0.954 888 894: 0.06: 0.067 621 594: 0.932 378 406: 0.08: 0.090 078 126: 0.909 ...

  4. Gaussian random field - Wikipedia

    en.wikipedia.org/wiki/Gaussian_random_field

    One way of constructing a GRF is by assuming that the field is the sum of a large number of plane, cylindrical or spherical waves with uniformly distributed random phase. Where applicable, the central limit theorem dictates that at any point, the sum of these individual plane-wave contributions will exhibit a Gaussian distribution.

  5. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    A plot of the Q-function. In statistics, the Q-function is the tail distribution function of the standard normal distribution. [1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations.

  6. Random field - Wikipedia

    en.wikipedia.org/wiki/Random_field

    In physics and mathematics, a random field is a random function over an arbitrary domain (usually a multi-dimensional space such as ). That is, it is a function f ( x ) {\displaystyle f(x)} that takes on a random value at each point x ∈ R n {\displaystyle x\in \mathbb {R} ^{n}} (or some other domain).

  7. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  8. Gaussian free field - Wikipedia

    en.wikipedia.org/wiki/Gaussian_free_field

    In probability theory and statistical mechanics, the Gaussian free field (GFF) is a Gaussian random field, a central model of random surfaces (random height functions). The discrete version can be defined on any graph, usually a lattice in d-dimensional Euclidean space. The continuum version is defined on R d or on a bounded subdomain of R d.

  9. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    A Gaussian process can be used as a prior probability distribution over functions in Bayesian inference. [7] [23] Given any set of N points in the desired domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram matrix of your N points with some desired kernel, and sample from that Gaussian. For ...