Search results
Results from the WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory , and to illustrate simple set relationships in probability , logic , statistics , linguistics and computer science .
A Venn diagram is a representation of mathematical sets: a mathematical diagram representing sets as circles, with their relationships to each other expressed through their overlapping positions, so that all possible relationships between the sets are shown. [4] The Venn diagram is constructed with a collection of simple closed curves drawn in ...
UpSet plots tend to perform better than Venn diagrams for larger numbers of sets and when it is desirable to also show contextual information about the set intersections. [8] For visualizing diagrams with less than three sets, or when there are only few intersections, Venn and Euler diagram are generally preferred, because they tend to be more ...
Venn diagram: Venn diagram: all possible logical relations between a finite collection of different sets. Shows all possible logical relations between a finite collection of different sets. These diagrams depict elements as points in the plane, and sets as regions inside closed curves.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Venn diagram of = . The symmetric difference is equivalent to the union of both relative complements, that is: [1] = (), The symmetric difference can also be expressed using the XOR operation ⊕ on the predicates describing the two sets in set-builder notation:
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
When the number of sets grows beyond 3 a Venn diagram becomes visually complex, especially compared to the corresponding Euler diagram. The difference between Euler and Venn diagrams can be seen in the following example. Take the three sets: = {,,} = {,} = {,} The Euler and the Venn diagrams of those sets are: