Search results
Results from the WOW.Com Content Network
In the case of discrete inputs (indicator or frequency features for discrete events), naive Bayes classifiers form a generative-discriminative pair with multinomial logistic regression classifiers: each naive Bayes classifier can be considered a way of fitting a probability model that optimizes the joint likelihood (,), while logistic ...
In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [ 2 ] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set . [ 3 ]
The parameter is called the hyperparameter, while its distribution given by (,) is an example of a hyperprior distribution. The notation of the distribution of Y changes as another parameter is added, i.e. Y ∣ θ , μ ∼ N ( θ , 1 ) {\displaystyle Y\mid \theta ,\mu \sim N(\theta ,1)} .
In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, an orange, or an ...
Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.
A loss function is said to be classification-calibrated or Bayes consistent if its optimal is such that / = (()) and is thus optimal under the Bayes decision rule. A Bayes consistent loss function allows us to find the Bayes optimal decision function f ϕ ∗ {\displaystyle f_{\phi }^{*}} by directly minimizing the expected risk and without ...
Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().