Search results
Results from the WOW.Com Content Network
While naive Bayes often fails to produce a good estimate for the correct class probabilities, [16] this may not be a requirement for many applications. For example, the naive Bayes classifier will make the correct MAP decision rule classification so long as the correct class is predicted as more probable than any other class.
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [ 2 ] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set . [ 3 ]
Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.
In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The parameter is called the hyperparameter, while its distribution given by (,) is an example of a hyperprior distribution. The notation of the distribution of Y changes as another parameter is added, i.e. Y ∣ θ , μ ∼ N ( θ , 1 ) {\displaystyle Y\mid \theta ,\mu \sim N(\theta ,1)} .
Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code