Search results
Results from the WOW.Com Content Network
The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Signals can be classified as continuous or discrete time. In the mathematical abstraction, the domain of a continuous-time signal is the set of real numbers (or some interval thereof), whereas the domain of a discrete-time (DT) signal is the set of integers (or other subsets of real numbers). What these integers represent depends on the nature ...
A discrete signal or discrete-time signal is a time series consisting of a sequence of quantities. Unlike a continuous-time signal, a discrete-time signal is not a function of a continuous argument; however, it may have been obtained by sampling from a continuous-time signal.
This helps in understanding the amplitude variations of the signal as a function of time, which provides an initial insight into the signal's behavior. 3.Transforming the Signal from Time Domain to Frequency Domain. The next step is to transform the audio signal from the time domain to the frequency domain using the Discrete Fourier Transform ...
In digital signal processing, a discrete Fourier series (DFS) is a Fourier series whose sinusoidal components are functions of a discrete variable instead of a continuous variable. The result of the series is also a function of the discrete variable, i.e. a discrete sequence.
A digital signal is an abstraction that is discrete in time and amplitude. The signal's value only exists at regular time intervals, since only the values of the corresponding physical signal at those sampled moments are significant for further digital processing. The digital signal is a sequence of codes drawn from a finite set of values. [10]
Digital control theory is the technique to design strategies in discrete time, (and/or) quantized amplitude (and/or) in (binary) coded form to be implemented in computer systems (microcontrollers, microprocessors) that will control the analog (continuous in time and amplitude) dynamics of analog systems.
In signal processing, this definition can be used to evaluate the Z-transform of the unit impulse response of a discrete-time causal system.. An important example of the unilateral Z-transform is the probability-generating function, where the component [] is the probability that a discrete random variable takes the value.