Search results
Results from the WOW.Com Content Network
Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes. [2]
In mathematics, a character sum is a sum () of values of a Dirichlet character χ modulo N, taken over a given range of values of n.Such sums are basic in a number of questions, for example in the distribution of quadratic residues, and in particular in the classical question of finding an upper bound for the least quadratic non-residue modulo N.
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as
c q (n), Ramanujan's sum, is the sum of the nth powers of the primitive qth roots of unity: = (,) =. Even though it is defined as a sum of complex numbers (irrational for most values of q ), it is an integer.
Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.
Hardy–Ramanujan theorem (number theory) Harish–Chandra theorem (representation theory) Harish–Chandra's regularity theorem (representation theory) Harnack's curve theorem (real algebraic geometry) Harnack's theorem (complex analysis) Hartman–Grobman theorem (dynamical systems) Hartogs–Rosenthal theorem (complex analysis)
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions.The identities were first discovered and proved by Leonard James Rogers (), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913.