Search results
Results from the WOW.Com Content Network
In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
The factorial of is , or in symbols, ! =. There are several motivations for this definition: For n = 0 {\displaystyle n=0} , the definition of n ! {\displaystyle n!} as a product involves the product of no numbers at all, and so is an example of the broader convention that the empty product , a product of no factors, is equal to the ...
1. Factorial: if n is a positive integer, n! is the product of the first n positive integers, and is read as "n factorial". 2. Double factorial: if n is a positive integer, n!! is the product of all positive integers up to n with the same parity as n, and is read as "the double factorial of n". 3.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
These symbols were originally devised as a mathematical notation to describe algorithms. [1] APL programmers often assign informal names when discussing functions and operators (for example, "product" for ×/) but the core functions and operators provided by the language are denoted by non-textual symbols.
The number of perfect matchings of the complete graph K n (with n even) is given by the double factorial (n – 1)!!. [12] The crossing numbers up to K 27 are known, with K 28 requiring either 7233 or 7234 crossings. Further values are collected by the Rectilinear Crossing Number project. [13] Rectilinear Crossing numbers for K n are
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...