Search results
Results from the WOW.Com Content Network
Radiation exposure through ionizing radiation (IR) affects a variety of processes inside of an exposed cell. IR can cause changes in gene expression, disruption of cell cycle arrest, and apoptotic cell death. The extent of how radiation effects cells depends on the type of cell and the dosage of the radiation.
Radiolysis of intracellular water by ionizing radiation creates peroxides, which are relatively stable precursors to hydroxyl radicals. 60%–70% of cellular DNA damage is caused by hydroxyl radicals, [3] yet hydroxyl radicals are so reactive that they can only diffuse one or two molecular diameters before reacting with cellular components.
Radiation hormesis is the conjecture that a low level of ionizing radiation (i.e., near the level of Earth's natural background radiation) helps "immunize" cells against DNA damage from other causes (such as free radicals or larger doses of ionizing radiation), and decreases the risk of cancer. The theory proposes that such low levels activate ...
Exposure to radiation causes chemical changes in gases. The least susceptible to damage are noble gases, where the major concern is the nuclear transmutation with follow-up chemical reactions of the nuclear reaction products. High-intensity ionizing radiation in air can produce a visible ionized air glow of telltale
The central role of DNA damage and epigenetic defects in DNA repair genes in carcinogenesis. DNA damage is considered to be the primary cause of cancer. [17] More than 60,000 new naturally-occurring instances of DNA damage arise, on average, per human cell, per day, due to endogenous cellular processes (see article DNA damage (naturally occurring)).
Stochastic effects do not have a threshold of irradiation, are coincidental, and cannot be avoided. They can be divided into somatic and genetic effects. Among the somatic effects, secondary cancer is the most important. It develops because radiation causes DNA mutations directly and indirectly.
In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. [2] Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the ...
The human body cannot sense ionizing radiation except in very high doses, but the effects of ionization can be used to characterize the radiation. Parameters of interest include disintegration rate, particle flux, particle type, beam energy, kerma, dose rate, and radiation dose.