enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    [11] [12]: 150 The physics concept of force makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.

  3. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    Note that the inertia force is in front of the phase of the drag force: the flow velocity is a sine wave, while the local acceleration is a cosine wave as a function of time. In fluid dynamics the Morison equation is a semi- empirical equation for the inline force on a body in oscillatory flow.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112 = The force in the equation is not the force the object exerts. Replacing momentum by mass times velocity, the law is also written more famously as

  5. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  7. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The amount of suspension force required is the mass of the internal weight (multiplied by the acceleration of gravity) minus those 0.34 newtons. In other words: any object co-rotating with the Earth at the equator has its measured weight reduced by 0.34 percent, thanks to the Earth's rotation.

  8. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    An equation for the acceleration can be derived by analyzing forces. Assuming a massless, inextensible string and an ideal massless pulley, the only forces to consider are: tension force (T), and the weight of the two masses (W 1 and W 2). To find an acceleration, consider the forces affecting each individual mass.

  9. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.