enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    [12] [13]: 150 The physics concept of force makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.

  3. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  4. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...

  5. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems , g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [ 2 ]

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112 = The force in the equation is not the force the object exerts. Replacing momentum by mass times velocity, the law is also written more famously as

  7. Specific force - Wikipedia

    en.wikipedia.org/wiki/Specific_force

    Specific force (SF) is a mass-specific quantity defined as the quotient of force per unit mass. S F = F / m {\displaystyle \mathrm {SF} =F/m} It is a physical quantity of kind acceleration , with dimension of length per time squared and units of metre per second squared (m·s −2 ).

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Then the attraction force vector onto a sample mass can be expressed as: F = m g {\displaystyle \mathbf {F} =m\mathbf {g} } Here g {\displaystyle \mathbf {g} } is the frictionless , free-fall acceleration sustained by the sampling mass m {\displaystyle m} under the attraction of the gravitational source.

  9. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    The total (mechanical) force that is calculated to induce the proper acceleration on a mass at rest in a coordinate system that has a proper acceleration, via Newton's law F = ma, is called the proper force. As seen above, the proper force is equal to the opposing reaction force that is measured as an object's "operational weight" (i.e. its ...