Search results
Results from the WOW.Com Content Network
There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.
Radioactive decay is seen in all isotopes of all elements of atomic number 83 or greater. Bismuth-209, however, is only very slightly radioactive, with a half-life greater than the age of the universe; radioisotopes with extremely long half-lives are considered effectively stable for practical purposes.
Terms "partial half-life" and "partial mean life" denote quantities derived from a decay constant as if the given decay mode were the only decay mode for the quantity. The term "partial half-life" is misleading, because it cannot be measured as a time interval for which a certain quantity is halved.
This value is in the denominator of the decay correcting fraction, so it is the same as multiplying the numerator by its inverse (), which is 2.82. (A simple way to check if you are using the decay correct formula right is to put in the value of the half-life in place of "t".
However, if the probability of escape at each collision is very small, the half-life of the radioisotope will be very long, since it is the time required for the total probability of escape to reach 50%. As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years.
The integral solution is described by exponential decay: =, where N 0 is the initial quantity of atoms at time t = 0. Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:
The radioactive decay constant, the probability that an atom will decay per year, is the solid foundation of the common measurement of radioactivity. The accuracy and precision of the determination of an age (and a nuclide's half-life) depends on the accuracy and precision of the decay constant measurement. [9]
Here the problem with the term partial half-life is evident: after (341+6.60) days almost all the nuclei will have decayed, not only half as one may initially think. Isotopes with significant branching of decay modes include copper-64 , arsenic-74 , rhodium-102 , indium-112 , iodine-126 and holmium-164 .