Search results
Results from the WOW.Com Content Network
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
Local search usually works on all variables, improving a complete assignment to them. However, local search can also be run on a subset of variables, using some other mechanism for the other variables. A proposed algorithm works on a cycle cutset, which is a set of variables that, if removed from the problem, makes it acyclic.
The algorithm continues until a removed node (thus the node with the lowest f value out of all fringe nodes) is a goal node. [b] The f value of that goal is then also the cost of the shortest path, since h at the goal is zero in an admissible heuristic. The algorithm described so far only gives the length of the shortest path.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
State space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property. Problems are often modelled as a state space, a set of states that a problem
In such search problems, a heuristic can be used to try good choices first so that bad paths can be eliminated early (see alpha–beta pruning). In the case of best-first search algorithms, such as A* search , the heuristic improves the algorithm's convergence while maintaining its correctness as long as the heuristic is admissible .
An algorithm is said to solve the problem if at least one corresponding structure exists, and then one occurrence of this structure is made output; otherwise, the algorithm stops with an appropriate output ("not found" or any message of the like). Every search problem also has a corresponding decision problem, namely
Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.