Search results
Results from the WOW.Com Content Network
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force . [ 2 ]
Action at a distance is the concept in physics that an object's motion can be affected by another object without the two being in physical contact; that is, it is the concept of the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.
Coulomb's law for the electric force between two stationary, electrically charged bodies has much the same mathematical form as Newton's law of universal gravitation: the force is proportional to the product of the charges, inversely proportional to the square of the distance between them, and directed along the straight line between them.
Analogously, Coulomb's law is the fundamental law that describes the force that charged objects exert on one another. It is given by the formula = where F is the force, k e is the Coulomb constant, q 1 and q 2 are the magnitudes of the two charges, and r 2 is the square of the distance between them. It describes the fact that like charges repel ...
Coulomb's law quantifies the electrostatic force between two particles by asserting that the force is proportional to the product of their charges, and inversely proportional to the square of the distance between them. The charge of an antiparticle equals that of the corresponding particle, but with opposite sign.
Such forces are described by Coulomb's law. There are many examples of electrostatic phenomena, from those as simple as the attraction of plastic wrap to one's hand after it is removed from a package, to the apparently spontaneous explosion of grain silos, the damage of electronic components during manufacturing, and photocopier and laser ...
What is plain from this definition, though, is that the unit of E is N/C (newtons per coulomb). This unit is equal to V/m (volts per meter); see below. In electrostatics, where charges are not moving, around a distribution of point charges, the forces determined from Coulomb's law may be summed. The result after dividing by q 0 is:
The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, light, sound, and radiation ...