Search results
Results from the WOW.Com Content Network
If they are twisted in the opposite direction, this is negative supercoiling, and the bases come apart more easily. In nature, most DNA has slight negative supercoiling that is introduced by enzymes called topoisomerases. [44]
DNA supercoiling is important for DNA packaging within all cells. Because the length of DNA can be thousands of times that of a cell, packaging this genetic material into the cell or nucleus (in eukaryotes) is a difficult feat. Supercoiling of DNA reduces the space and allows for DNA to be packaged.
Negative-sense (3′-to-5′) viral RNA is complementary to the viral mRNA, thus a positive-sense RNA must be produced by an RNA-dependent RNA polymerase from it prior to translation. Like DNA, negative-sense RNA has a nucleotide sequence complementary to the mRNA that it encodes; also like DNA, this RNA cannot be translated into protein directly.
DNA gyrase is a tetrameric enzyme that consists of 2 GyrA ("A") and 2 GyrB ("B") subunits. [8] Structurally the complex is formed by 3 pairs of "gates", sequential opening and closing of which results into the direct transfer of DNA segment and introduction of 2 negative supercoils. N-gates are formed by ATPase domains of GyrB subunits.
The polyelectrolyte theory of the gene reasons that DNA can maintain its shape regardless of mutations because the negative charges on the phosphate backbone dominate the physical interactions of the molecule to such a degree that changes in the nucleic acid sequence, the encoded information, do not affect the overall physical behavior of the ...
The bending of DNA by gyrase has been proposed as a key mechanism in the ability of gyrase to introduce negative supercoils into the DNA. This is consistent with footprinting data that shows that gyrase has a 140-base-pair footprint. Both gyrase and topoisomerase IV CTDs bend DNA, but only gyrase introduces negative supercoils.
When it comes to insects' DNA, humans have a bit less in common. For example, fruit flies share 61 percent of disease-causing genes with humans, which was important when NASA studied the bugs to ...
Using an electric field, molecules (such as DNA) can be made to move through a gel made of agarose or polyacrylamide. The electric field consists of a negative charge at one end which pushes the molecules through the gel, and a positive charge at the other end that pulls the molecules through the gel.