Search results
Results from the WOW.Com Content Network
For example, consider radical bromination of toluene: [5] bromination of toluene with hydrobromic acid and hydrogen peroxide in water. This reaction takes place on water instead of an organic solvent and the bromine is obtained from oxidation of hydrobromic acid with hydrogen peroxide. An incandescent light bulb suffices to radicalize.
Reaction scheme of the photobromination of the methyl group of toluene. Photobromination with elemental bromine proceeds analogous to photochlorination also via a radical mechanism. In the presence of oxygen, the hydrogen bromide formed is partly oxidised back to bromine, resulting in an increased yield. Because of the easier dosage of the ...
In organic chemistry, dehalogenation is a set of chemical reactions that involve the cleavage of carbon-halogen bonds; as such, it is the inverse reaction of halogenation. Dehalogenations come in many varieties, including defluorination (removal of fluorine ), dechlorination (removal of chlorine ), debromination (removal of bromine ), and ...
Iodination and bromination can be effected by the addition of iodine and bromine to alkenes. The reaction, which conveniently proceeds with the discharge of the color of I 2 and Br 2, is the basis of the analytical method. The iodine number and bromine number are measures of the degree of unsaturation for fats and other organic compounds.
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 ...
The reaction mechanism for chlorination of benzene is the same as bromination of benzene. Iron(III) bromide and iron(III) chloride become inactivated if they react with water, including moisture in the air. Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction:
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
The most commonly employed Sandmeyer reactions are the chlorination, bromination, cyanation, and hydroxylation reactions using CuCl, CuBr, CuCN, and Cu 2 O, respectively. More recently, trifluoromethylation of diazonium salts has been developed and is referred to as a 'Sandmeyer-type' reaction.