Search results
Results from the WOW.Com Content Network
If a cyclic quadrilateral has side lengths that form an arithmetic progression the quadrilateral is also ex-bicentric. If the opposite sides of a cyclic quadrilateral are extended to meet at E and F, then the internal angle bisectors of the angles at E and F are perpendicular. [13]
Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).
A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic.
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
Polygons named for their number of sides Monogon — 1 sided; Digon — 2 sided; Triangle. Acute triangle; ... Quadrilateral. Cyclic quadrilateral. square; kite ...
A cyclic polygon with an even number of sides has all angles equal if and only if the alternate sides are equal (that is, sides 1, 3, 5, … are equal, and sides 2, 4, 6, … are equal). [ 11 ] A cyclic pentagon with rational sides and area is known as a Robbins pentagon .
In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...