Search results
Results from the WOW.Com Content Network
As a relation between some temporal events and some spatial events, hyperbolic orthogonality (as found in split-complex numbers) is a heterogeneous relation. [21] A geometric configuration can be considered a relation between its points and its lines. The relation is expressed as incidence. Finite and infinite projective and affine planes are ...
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
An integer relation algorithm is an algorithm for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them, or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain upper ...
When it is desired to associate a numeric value with the result of a comparison between two data items, say a and b, the usual convention is to assign −1 if a < b, 0 if a = b and 1 if a > b. For example, the C function strcmp performs a three-way comparison and returns −1, 0, or 1 according to this convention, and qsort expects the ...
If X and Y are finite sets, then there exists a bijection between the two sets X and Y if and only if X and Y have the same number of elements. Indeed, in axiomatic set theory , this is taken as the definition of "same number of elements" ( equinumerosity ), and generalising this definition to infinite sets leads to the concept of cardinal ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
[8] [9] This definition is equivalent to a partial order on a setoid, where equality is taken to be a defined equivalence relation rather than set equality. [10] Wallis defines a more general notion of a partial order relation as any homogeneous relation that is transitive and antisymmetric. This includes both reflexive and irreflexive partial ...
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.