Search results
Results from the WOW.Com Content Network
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles.
A contact force is any force that occurs as a result of two objects making contact with each other. [1] Contact forces are very common and are responsible for most visible interactions between macroscopic collections of matter. Pushing a car or kicking a ball are some of the everyday examples where contact forces are at work.
The gravitational and electromagnetic interactions produce long-range forces whose effects can be seen directly in everyday life. The strong and weak interactions produce forces at subatomic scales and govern nuclear interactions inside atoms. Some scientists hypothesize that a fifth force might exist, but these hypotheses remain speculative.
Analogously, Coulomb's law is the fundamental law that describes the force that charged objects exert on one another. It is given by the formula = where F is the force, k e is the Coulomb constant, q 1 and q 2 are the magnitudes of the two charges, and r 2 is the square of the distance between them. It describes the fact that like charges repel ...
[36] [37]: 35 The electromagnetic force is very strong, second only in strength to the strong interaction, [38] but unlike that force it operates over all distances. [39] In comparison with the much weaker gravitational force , the electromagnetic force pushing two electrons apart is 10 42 times that of the gravitational attraction pulling them ...
For example, friction is a manifestation of the electromagnetic force acting between atoms of two surfaces. The forces in springs, modeled by Hooke's law, are also the result of electromagnetic forces. Centrifugal forces are acceleration forces that arise simply from the acceleration of rotating frames of reference. [4]: 12-11 [5]: 359
Also, gravitational forces are much weaker than electrostatic forces. [2] Coulomb's law can be used to derive Gauss's law , and vice versa. In the case of a single point charge at rest, the two laws are equivalent, expressing the same physical law in different ways. [ 6 ]