Search results
Results from the WOW.Com Content Network
Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, [3] selection of investments and portfolios, [4] selection of assets for asset-backed securitization, [5] and generating keys for the Merkle–Hellman [6] and other knapsack cryptosystems.
Generalized assignment problem; Integer programming. The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete [2] [3]: MP1 Some problems related to Job-shop scheduling; Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
The activity selection problem is characteristic of this class of problems, where the goal is to pick the maximum number of activities that do not clash with each other. In the Macintosh computer game Crystal Quest the objective is to collect crystals, in a fashion similar to the travelling salesman problem. The game has a demo mode, where the ...
One variation of this problem assumes that the people making change will use the "greedy algorithm" for making change, even when that requires more than the minimum number of coins. Most current currencies use a 1-2-5 series , but some other set of denominations would require fewer denominations of coins or a smaller average number of coins to ...
This is an unbalanced assignment problem. One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.