enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abstract simplicial complex - Wikipedia

    en.wikipedia.org/wiki/Abstract_simplicial_complex

    One-dimensional abstract simplicial complexes are mathematically equivalent to simple undirected graphs: the vertex set of the complex can be viewed as the vertex set of a graph, and the two-element facets of the complex correspond to undirected edges of a graph. In this view, one-element facets of a complex correspond to isolated vertices that ...

  3. Kruskal–Katona theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Katona_theorem

    In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes.It includes as a special case the ErdÅ‘s–Ko–Rado theorem and can be restated in terms of uniform hypergraphs.

  4. Simplicial complex recognition problem - Wikipedia

    en.wikipedia.org/wiki/Simplicial_complex...

    An abstract simplicial complex (ASC) is family of sets that is closed under taking subsets (the subset of a set in the family is also a set in the family). Every abstract simplicial complex has a unique geometric realization in a Euclidean space as a geometric simplicial complex (GSC), where each set with k elements in the ASC is mapped to a (k-1)-dimensional simplex in the GSC.

  5. Subdivision (simplicial complex) - Wikipedia

    en.wikipedia.org/wiki/Subdivision_(simplicial...

    Let K be an abstract simplicial complex (ASC). The face poset of K is a poset made of all nonempty simplices of K , ordered by inclusion (which is a partial order). For example, the face-poset of the closure of {A,B,C} is the poset with the following chains:

  6. Vietoris–Rips complex - Wikipedia

    en.wikipedia.org/wiki/Vietoris–Rips_complex

    In topology, the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is a way of forming a topological space from distances in a set of points. It is an abstract simplicial complex that can be defined from any metric space M and distance δ by forming a simplex for every finite set of points that has diameter at most δ.

  7. Hypergraph - Wikipedia

    en.wikipedia.org/wiki/Hypergraph

    A downward-closed hypergraph is usually called an abstract simplicial complex. It is generally not reduced, unless all hyperedges have cardinality 1. An abstract simplicial complex with the augmentation property is called a matroid. Laminar: for any two hyperedges, either they are disjoint, or one is included in the other.

  8. Clique complex - Wikipedia

    en.wikipedia.org/wiki/Clique_complex

    Every flag complex is a clique complex: given a flag complex, define a graph G on the set of all vertices, where two vertices u,v are adjacent in G iff {u,v} is in the complex (this graph is called the 1-skeleton of the complex). By definition of a flag complex, every set of vertices that are pairwise-connected, is in the complex.

  9. Simplicial complex - Wikipedia

    en.wikipedia.org/wiki/Simplicial_complex

    A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).