Search results
Results from the WOW.Com Content Network
One-dimensional abstract simplicial complexes are mathematically equivalent to simple undirected graphs: the vertex set of the complex can be viewed as the vertex set of a graph, and the two-element facets of the complex correspond to undirected edges of a graph. In this view, one-element facets of a complex correspond to isolated vertices that ...
In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes.It includes as a special case the ErdÅ‘s–Ko–Rado theorem and can be restated in terms of uniform hypergraphs.
An abstract simplicial complex (ASC) is family of sets that is closed under taking subsets (the subset of a set in the family is also a set in the family). Every abstract simplicial complex has a unique geometric realization in a Euclidean space as a geometric simplicial complex (GSC), where each set with k elements in the ASC is mapped to a (k-1)-dimensional simplex in the GSC.
Let K be an abstract simplicial complex (ASC). The face poset of K is a poset made of all nonempty simplices of K , ordered by inclusion (which is a partial order). For example, the face-poset of the closure of {A,B,C} is the poset with the following chains:
In topology, the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is a way of forming a topological space from distances in a set of points. It is an abstract simplicial complex that can be defined from any metric space M and distance δ by forming a simplex for every finite set of points that has diameter at most δ.
A downward-closed hypergraph is usually called an abstract simplicial complex. It is generally not reduced, unless all hyperedges have cardinality 1. An abstract simplicial complex with the augmentation property is called a matroid. Laminar: for any two hyperedges, either they are disjoint, or one is included in the other.
Every flag complex is a clique complex: given a flag complex, define a graph G on the set of all vertices, where two vertices u,v are adjacent in G iff {u,v} is in the complex (this graph is called the 1-skeleton of the complex). By definition of a flag complex, every set of vertices that are pairwise-connected, is in the complex.
A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).