enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abstract simplicial complex - Wikipedia

    en.wikipedia.org/wiki/Abstract_simplicial_complex

    One-dimensional abstract simplicial complexes are mathematically equivalent to simple undirected graphs: the vertex set of the complex can be viewed as the vertex set of a graph, and the two-element facets of the complex correspond to undirected edges of a graph. In this view, one-element facets of a complex correspond to isolated vertices that ...

  3. Poset topology - Wikipedia

    en.wikipedia.org/wiki/Poset_topology

    The order complex associated to a poset (S, ≤) has the set S as vertices, and the finite chains of (S, ≤) as faces. The poset topology associated to a poset ( S , ≤) is then the Alexandrov topology on the order complex associated to ( S , ≤).

  4. Alexander duality - Wikipedia

    en.wikipedia.org/wiki/Alexander_duality

    Let be an abstract simplicial complex on a vertex set of size . The Alexander dual X ∗ {\displaystyle X^{*}} of X {\displaystyle X} is defined as the simplicial complex on V {\displaystyle V} whose faces are complements of non-faces of X {\displaystyle X} .

  5. h-vector - Wikipedia

    en.wikipedia.org/wiki/H-vector

    Let Δ be an abstract simplicial complex of dimension d − 1 with f i i-dimensional faces and f −1 = 1. These numbers are arranged into the f-vector of Δ, = (,, …,).An important special case occurs when Δ is the boundary of a d-dimensional convex polytope.

  6. Subdivision (simplicial complex) - Wikipedia

    en.wikipedia.org/wiki/Subdivision_(simplicial...

    Let K be an abstract simplicial complex (ASC). The face poset of K is a poset made of all nonempty simplices of K , ordered by inclusion (which is a partial order). For example, the face-poset of the closure of {A,B,C} is the poset with the following chains:

  7. Kruskal–Katona theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Katona_theorem

    In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes.It includes as a special case the ErdÅ‘s–Ko–Rado theorem and can be restated in terms of uniform hypergraphs.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Triangulation (topology) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(topology)

    For computational issues, it is sometimes easier to assume spaces to be CW-complexes and determine their homology via cellular decomposition, an example is the projective plane : Its construction as a CW-complex needs three cells, whereas its simplicial complex consists of 54 simplices.