Search results
Results from the WOW.Com Content Network
Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization , some or all of the variables used in a discrete optimization problem are restricted to be discrete variables —that is, to assume only a discrete set of values, such as the integers .
An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization, in which an optimal value from a continuous function must be found.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [1] [2] It is generally divided into two subfields: discrete optimization and continuous optimization.
Continuous optimization is a branch of optimization in applied mathematics. [1]As opposed to discrete optimization, the variables used in the objective function are required to be continuous variables—that is, to be chosen from a set of real values between which there are no gaps (values from intervals of the real line).
In continuous optimization, A is some subset of the Euclidean space R n, often specified by a set of constraints, equalities or inequalities that the members of A have to satisfy. In combinatorial optimization, A is some subset of a discrete space, like binary strings, permutations, or sets of integers.
One of the main applications of the maximum entropy principle is in discrete and continuous density estimation. [10] [11] Similar to support vector machine estimators, the maximum entropy principle may require the solution to a quadratic programming problem, and thus provide a sparse mixture model as the optimal density estimator. One important ...
Discrete choice models theoretically or empirically model choices made by people among a finite set of alternatives. The models have been used to examine, e.g., the choice of which car to buy, [1] [3] where to go to college, [4] which mode of transport (car, bus, rail) to take to work [5] among numerous other applications. Discrete choice ...