Search results
Results from the WOW.Com Content Network
A version of the periodic table indicating the origins – including big bang nucleosynthesis – of the elements. All elements above 103 are also man-made and are not included. Big Bang nucleosynthesis produced very few nuclei of elements heavier than lithium due to a bottleneck: the absence of a stable nucleus with 8 or 5 nucleons. This ...
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. [1]
Helium nuclei are produced during Big Bang nucleosynthesis, and make up about 24% of the total mass of baryonic matter. The ionization energy of helium is larger than that of hydrogen and it therefore recombines earlier. Because neutral helium carries two electrons, its recombination proceeds in two steps.
An example of cosmic ray spallation is a neutron hitting a nitrogen-14 nucleus in the Earth's atmosphere, yielding a proton, an alpha particle, and a beryllium-10 nucleus, which eventually decays to boron-10. Alternatively, a proton can hit oxygen-16, yielding two protons, a neutron, and again an alpha particle and a beryllium-10 nucleus.
Nucleogenesis (also known as nucleosynthesis) as a general phenomenon is a process usually associated with production of nuclides in the Big Bang or in stars, by nuclear reactions there. Some of these neutron reactions (such as the r-process and s-process ) involve absorption by atomic nuclei of high-temperature (high energy) neutrons from the ...
The Primordial Era is defined as "−50 < n < 5". In this era, the Big Bang, the subsequent inflation, and Big Bang nucleosynthesis are thought to have taken place. Toward the end of this age, the recombination of electrons with nuclei made the universe transparent for the first time.
Big Bang nucleosynthesis is the theory of the formation of the elements in the early universe. It finished when the universe was about three minutes old and its temperature dropped below that at which nuclear fusion could occur. Big Bang nucleosynthesis had a brief period during which it could operate, so only the very lightest elements were ...
The amount of lithium generated in the Big Bang can be calculated. [4] Hydrogen-1 is the most abundant nuclide, comprising roughly 92% of the atoms in the Universe, with helium-4 second at 8%. Other isotopes including 2 H, 3 H, 3 He, 6 Li, 7 Li, and 7 Be are much rarer; the estimated abundance of primordial lithium is 10 −10 relative to ...