enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical inference - Wikipedia

    en.wikipedia.org/wiki/Statistical_inference

    Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution. [1] Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.

  3. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.

  4. Analytical skill - Wikipedia

    en.wikipedia.org/wiki/Analytical_skill

    Inferential analysis analyses a sample from complete data to compare the difference between treatment groups. [53] Multiple conclusions are constructed by selecting different samples. Inferential analysis can provide evidence that, with a certain percentage of confidence, there is a relationship between two variables.

  5. Biostatistics - Wikipedia

    en.wikipedia.org/wiki/Biostatistics

    The correct definition of the main hypothesis and the research plan will reduce errors while taking a decision in understanding a phenomenon. The research plan might include the research question, the hypothesis to be tested, the experimental design , data collection methods, data analysis perspectives and costs involved.

  6. Informal inferential reasoning - Wikipedia

    en.wikipedia.org/wiki/Informal_Inferential_Reasoning

    In statistics education, informal inferential reasoning (also called informal inference) refers to the process of making a generalization based on data (samples) about a wider universe (population/process) while taking into account uncertainty without using the formal statistical procedure or methods (e.g. P-values, t-test, hypothesis testing, significance test).

  7. Exploratory causal analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_causal_analysis

    Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.

  8. Bivariate analysis - Wikipedia

    en.wikipedia.org/wiki/Bivariate_analysis

    Like univariate analysis, bivariate analysis can be descriptive or inferential. It is the analysis of the relationship between the two variables. [ 1 ] Bivariate analysis is a simple (two variable) special case of multivariate analysis (where multiple relations between multiple variables are examined simultaneously).

  9. Confirmatory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Confirmatory_factor_analysis

    In statistics, confirmatory factor analysis (CFA) is a special form of factor analysis, most commonly used in social science research. [1] It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct (or factor). As such, the objective of confirmatory factor analysis is to ...