Search results
Results from the WOW.Com Content Network
In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.
As an example, VBA code written in Microsoft Access can establish references to the Excel, Word and Outlook libraries; this allows creating an application that – for instance – runs a query in Access, exports the results to Excel and analyzes them, and then formats the output as tables in a Word document or sends them as an Outlook email.
The class of stochastic chains with memory of variable length was introduced by Jorma Rissanen in the article A universal data compression system. [1] Such class of stochastic chains was popularized in the statistical and probabilistic community by P. Bühlmann and A. J. Wyner in 1999, in the article Variable Length Markov Chains.
The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.
A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.
[1] [2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue. [ 3 ] [ 4 ] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains.
In the mathematical theory of stochastic processes, variable-order Markov (VOM) models are an important class of models that extend the well known Markov chain models. In contrast to the Markov chain models, where each random variable in a sequence with a Markov property depends on a fixed number of random variables, in VOM models this number of conditioning random variables may vary based on ...