Search results
Results from the WOW.Com Content Network
Vibration (from Latin vibrāre 'to shake') is a mechanical phenomenon whereby oscillations occur about an equilibrium point.Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the oscillations can only be analysed statistically (e.g. the movement of a tire on a gravel road).
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.
The normal modes of vibration of a crystal are in general superpositions of many overtones, each with an appropriate amplitude and phase. Longer wavelength (low frequency) phonons are exactly those acoustical vibrations which are considered in the theory of sound. Both longitudinal and transverse waves can be propagated through a solid, while ...
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, [1] principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
The theory of sonics is a branch of continuum mechanics which describes the transmission of mechanical energy through vibrations. The birth of the theory of sonics [ 1 ] is the publication of the book A treatise on transmission of power by vibrations in 1918 by the Romanian scientist Gogu Constantinescu .
[3] [4] The latter theory is discussed in detail by Elishakoff. [5] Solutions to the governing equations predicted by these theories can give us insight into the behavior of plate-like objects both under free and forced conditions. This includes the propagation of waves and the study of standing waves and vibration modes in plates.
According to string theory, every particle in the universe, at its most ultramicroscopic level (Planck length), consists of varying combinations of vibrating strings (or strands) with preferred patterns of vibration. String theory further claims that it is through these specific oscillatory patterns of strings that a particle of unique mass and ...