enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  5. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    Where n! denotes the factorial of n, and R n (x) is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function. Following is the process to derive an approximation for the first derivative of the function f by first truncating the Taylor polynomial plus remainder: f ( x 0 + h ) = f ( x 0 ) + f ...

  6. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    For example, if a quantity is constant within the whole interval, approximating it with a second-order Taylor series will not increase the accuracy. In the case of a smooth function, the nth-order approximation is a polynomial of degree n, which is obtained by truncating the Taylor series

  7. Calculus of functors - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_functors

    The approximating functors are required to be "k-excisive" – such functors are called polynomial functors by analogy with Taylor polynomials – which is a simplifying condition, and roughly means that they are determined by their behavior around k points at a time, or more formally are sheaves on the configuration space of k points in the ...

  8. Universal Taylor series - Wikipedia

    en.wikipedia.org/wiki/Universal_Taylor_series

    Thus to -approximate () = using a polynomial with lowest degree 3, we do so for () with < / by truncating its Taylor expansion. Now iterate this construction by plugging in the lowest-degree-3 approximation into the Taylor expansion of g ( x ) {\displaystyle g(x)} , obtaining an approximation of lowest degree 9, 27, 81...

  9. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]