Search results
Results from the WOW.Com Content Network
A reference to a standard or choice-free presentation of some mathematical object (e.g., canonical map, canonical form, or canonical ordering). The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes.
Re – real part of a complex number. [2] (Also written.) resp – respectively. RHS – right-hand side of an equation. rk – rank. (Also written as rank.) RMS, rms – root mean square. rng – non-unital ring. rot – rotor of a vector field. (Also written as curl.) rowsp – row space of a matrix. RTP – required to prove.
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way.
As the number of these sorts has remarkably increased in modern mathematics, the Greek alphabet and some Hebrew letters are also used. In mathematical formulas , the standard typeface is italic type for Latin letters and lower-case Greek letters, and upright type for upper case Greek letters.
The word entered Middle English around the 14th century, borrowed from Old French equalité (modern égalité). [7] The equals sign =, now universally accepted in mathematics for equality, was first recorded by Welsh mathematician Robert Recorde in The Whetstone of Witte (1557). The original form of the symbol was much wider than the present form.
Standard form may refer to a way of writing very large or very small numbers by comparing the powers of ten. It is also known as Scientific notation. Numbers in standard form are written in this format: a×10 n Where a is a number 1 ≤ a < 10 and n is an integer. ln mathematics and science Canonical form
The term 'expression' is part of the language of mathematics, that is to say, it is not defined within mathematics, but taken as a primitive part of the language. To attempt to define the term would not be doing mathematics, but rather, one would be engaging in a kind of metamathematics (the metalanguage of mathematics), usually mathematical logic.
The = symbol, now universally accepted in mathematics for equality, was first recorded by Welsh mathematician Robert Recorde in The Whetstone of Witte (1557). [4] The original form of the symbol was much wider than the present form. In his book Recorde explains his design of the "Gemowe lines" (meaning twin lines, from the Latin gemellus) [5]