enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is

  3. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  4. Lyapunov optimization - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_optimization

    A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state. Typically, the function is defined to grow large when the system moves towards undesirable states. System stability is achieved by taking control actions that make the Lyapunov function drift in the negative direction towards zero.

  5. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.

  6. Drift plus penalty - Wikipedia

    en.wikipedia.org/wiki/Drift_plus_penalty

    First, a non-negative function L(t) is defined as a scalar measure of the state of all queues at time t. The function L(t) is typically defined as the sum of the squares of all queue sizes at time t, and is called a Lyapunov function. The Lyapunov drift is defined: = (+) ()

  7. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is asymptotically Lyapunov stable. Later, it was stated by O. Perron that the requirement of regularity of the ...

  8. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    At r = 2, the function () intersects = precisely at the maximum point, so convergence to the equilibrium point is on the order of . Consequently, the equilibrium point is called "superstable". Its Lyapunov exponent is .

  9. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    Consider the dynamical system obtained by iterating the function f: x n + 1 = f ( x n ) , n = 0 , 1 , 2 , … . {\displaystyle x_{n+1}=f(x_{n}),\quad n=0,1,2,\ldots .} The fixed point a is stable if the absolute value of the derivative of f at a is strictly less than 1, and unstable if it is strictly greater than 1.