Search results
Results from the WOW.Com Content Network
Classification of the different kinds of optical autocorrelation. In optics, various autocorrelation functions can be experimentally realized. The field autocorrelation may be used to calculate the spectrum of a source of light, while the intensity autocorrelation and the interferometric autocorrelation are commonly used to estimate the duration of ultrashort pulses produced by modelocked lasers.
An alternative technique, total harmonic distortion measurement, cancels out the fundamental with a notch filter and measures the total remaining signal, which is total harmonic distortion plus noise; it does not give the harmonic-by-harmonic detail of an analyser. Spectrum analyzers are also used by audio engineers to assess their work.
Clipping can be detected by viewing the signal (on an oscilloscope, for example), and observing that the tops and bottoms of waves aren't smooth anymore. When working with images, some tools can highlight all pixels that are pure white, allowing the user to identify larger groups of white pixels and decide if too much clipping has occurred.
Lissajous curves can also be generated using an oscilloscope (as illustrated). An octopus circuit can be used to demonstrate the waveform images on an oscilloscope. Two phase-shifted sinusoid inputs are applied to the oscilloscope in X-Y mode and the phase relationship between the signals is presented as a Lissajous figure.
A distortionmeter is a level meter with two switchable parallel circuits at the input. The first circuit measures the total signal at the output of a system. (For low distortion levels this will be almost equal to fundamental). That value is adjusted to read 100% or, equivalently, to 0 dB.
A total harmonic distortion analyzer calculates the total harmonic content of a sinewave with some distortion, expressed as total harmonic distortion (THD). A typical application is to determine the THD of an amplifier by using a very-low-distortion sinewave input and examining the output.
X-parameters help solve this cascading problem: if the X-parameters of a set of components are measured individually, the X-parameters (and hence the non-linear transfer function) can be calculated of any cascade made from them. Calculations based on X-parameters are usually performed within a harmonic balance simulator environment. [3]
The following items are used for basic measurement of voltages, currents, and components in the circuit under test. Voltmeter (Measures voltage) Ohmmeter (Measures resistance) Ammeter, e.g. Galvanometer or Milliammeter (Measures current) Multimeter e.g., VOM (Volt-Ohm-Milliammeter) or DMM (Digital Multimeter) (Measures all of the above)