Search results
Results from the WOW.Com Content Network
In quantum mechanics, each physical system is associated with a Hilbert space, each element of which represents a possible state of the physical system.The approach codified by John von Neumann represents a measurement upon a physical system by a self-adjoint operator on that Hilbert space termed an "observable".
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum ...
In quantum mechanics, a density matrix (or density operator) is a matrix that describes an ensemble [1] of physical systems as quantum states (even if the ensemble contains only one system). It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule .
The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures.
In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2) having the minimal number ...
The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator. Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.
However, the measurements described by quantum metrology are currently not used in this setting, being difficult to implement. Furthermore, there are other sources of noise affecting the detection of gravitational waves which must be overcome first. Nevertheless, plans may call for the use of quantum metrology in LIGO. [13]
In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum mechanics, an observable is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations.