Search results
Results from the WOW.Com Content Network
Relational database management systems such as IBM Db2, [11] Informix, [11] Microsoft SQL Server, [11] Oracle 8, [11] Sybase ASE, [11] and SQLite [14] support this type of tree for table indices, though each such system implements the basic B+ tree structure with variations and extensions.
A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.
Database tables and indexes may be stored on disk in one of a number of forms, including ordered/unordered flat files, ISAM, heap files, hash buckets, or B+ trees. Each form has its own particular advantages and disadvantages. The most commonly used forms are B-trees and ISAM.
The B+ tree is a structure for indexing single-dimensional data. In order to adopt the B+ tree as a moving object index, the B x-tree uses a linearization technique which helps to integrate objects' location at time t into single dimensional value. Specifically, objects are first partitioned according to their update time.
These statements are misleading, and technically incorrect. B+ Trees are an extension to B-trees, and as such are typically used as indexes for commercial database systems. The B+ Tree comprises two parts: a sequential index containing an entry for every record in the file, and a B-tree acting as a multilevel index to the sequential index entries.
This implementation is a hybrid between the basic bitmap index (without compression) and the list of Row Identifiers (RID-list). Overall, the index is organized as a B+tree. When the column cardinality is low, each leaf node of the B-tree would contain long list of RIDs. In this case, it requires less space to represent the RID-lists as bitmaps.
In the above figure, the query Q is mapped to a value in the B +-tree while the kNN search ``sphere" is mapped to a range in the B +-tree. The search sphere expands gradually until the k NNs are found. This corresponds to gradually expanding range searches in the B +-tree. The iDistance technique can be viewed as a way of accelerating the ...
Static search structures are designed for answering many queries on a fixed database; dynamic structures also allow insertion, deletion, or modification of items between successive queries. In the dynamic case, one must also consider the cost of fixing the search structure to account for the changes in the database.