Search results
Results from the WOW.Com Content Network
Range minimum query reduced to the lowest common ancestor problem. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l … r].
Python's heapq module implements a binary min-heap on top of a list. Java's library contains a PriorityQueue class, which implements a min-priority-queue as a binary heap. .NET's library contains a PriorityQueue class, which implements an array-backed, quaternary min-heap.
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
Push-Pop(heap: List<T>, item: T) -> T: if heap is not empty and heap[1] > item then: // < if min heap swap heap[1] and item _downheap(heap starting from index 1) return item. A similar function can be defined for popping and then inserting, which in Python is called "heapreplace":
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
Search the final list of roots to find the minimum, and update the minimum pointer accordingly. This takes () time, because the number of roots has been reduced. Overall, the amortized time of this operation is (), provided that = (). The proof of this is given in the following section.
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
The randomness helps min-conflicts avoid local minima created by the greedy algorithm's initial assignment. In fact, Constraint Satisfaction Problems that respond best to a min-conflicts solution do well where a greedy algorithm almost solves the problem. Map coloring problems do poorly with Greedy Algorithm as well as Min-Conflicts. Sub areas ...