enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The CBOW can be viewed as a ‘fill in the blank’ task, where the word embedding represents the way the word influences the relative probabilities of other words in the context window. Words which are semantically similar should influence these probabilities in similar ways, because semantically similar words should be used in similar contexts.

  4. Text segmentation - Wikipedia

    en.wikipedia.org/wiki/Text_segmentation

    The Unicode Consortium has published a Standard Annex on Text Segmentation, [1] exploring the issues of segmentation in multiscript texts. Word splitting is the process of parsing concatenated text (i.e. text that contains no spaces or other word separators) to infer where word breaks exist. Word splitting may also refer to the process of ...

  5. Word recognition - Wikipedia

    en.wikipedia.org/wiki/Word_recognition

    Word recognition is a manner of reading based upon the immediate perception of what word a familiar grouping of letters represents. This process exists in opposition to phonetics and word analysis, as a different method of recognizing and verbalizing visual language (i.e. reading). [8] Word recognition functions primarily on automaticity.

  6. Scene text - Wikipedia

    en.wikipedia.org/wiki/Scene_text

    In word recognition, the text is assumed to be already detected and located and the rectangular bounding box containing the text is available. The word present in the bounding box needs to be recognized. The methods available to perform word recognition can be broadly classified into top-down and bottom-up approaches. In the top-down approaches ...

  7. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The bag-of-words model (BoW) is a model of text which uses a representation of text that is based on an unordered collection (a "bag") of words. It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity.

  8. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  9. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.