Search results
Results from the WOW.Com Content Network
Use of the Euler equations to estimate consumption appears to have advantages over traditional models. First, using Euler equations is simpler than conventional methods. This avoids the need to solve the consumer's optimization problem and is the most appealing element of using Euler equations to some economists. [4]
Consumption smoothing is an economic concept for the practice of optimizing a person's standard of living through an appropriate balance between savings and consumption over time. An optimal consumption rate should be relatively similar at each stage of a person's life rather than fluctuate wildly.
Koopmans claims in his main result that the Euler equations are both necessary and sufficient to characterize optimal trajectories in the model because any solutions to the Euler equations which do not converge to the optimal steady-state would hit either a zero consumption or zero capital boundary in finite time.
In contrast, a recursive model involves two or more periods, in which the consumer or producer trades off benefits and costs across the two time periods. This trade-off is sometimes represented in what is called an Euler equation. A time-series path in the recursive model is the result of a series of these two-period decisions.
The Keynes–Ramsey rule is named after Frank P. Ramsey, who derived it in 1928, [3] and his mentor John Maynard Keynes, who provided an economic interpretation. [4] Mathematically, the Keynes–Ramsey rule is a necessary first-order condition for an optimal control problem, also known as an Euler–Lagrange equation. [5]
A celebrated economic application of a Bellman equation is Robert C. Merton's seminal 1973 article on the intertemporal capital asset pricing model. [20] See also Merton's portfolio problem ). The solution to Merton's theoretical model, one in which investors chose between income today and future income or capital gains, is a form of Bellman's ...
In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.