Search results
Results from the WOW.Com Content Network
Each generator halves the number of runs required. A design with p such generators is a 1/(l p)=l −p fraction of the full factorial design. [3] For example, a 2 5 − 2 design is 1/4 of a two-level, five-factor factorial design. Rather than the 32 runs that would be required for the full 2 5 factorial experiment, this experiment requires only ...
A full factorial design contains all possible combinations of low/high levels for all the factors. A fractional factorial design contains a carefully chosen subset of these combinations. The criterion for choosing the subsets is discussed in detail in the fractional factorial designs article. Formalized by Frank Yates, a Yates analysis exploits ...
Designed experiments with full factorial design (left), response surface with second-degree polynomial (right) In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors.
A fractional factorial design is said to have resolution if every -factor effect [note 4] is unaliased with every effect having fewer than factors. For example, a design has resolution R = 3 {\displaystyle R=3} if main effects are unaliased with each other (taking p = 1 ) {\displaystyle p=1)} , though it allows main effects to be aliased with ...
If N is a power of 2, however, the resulting design is identical to a fractional factorial design, so Plackett–Burman designs are mostly used when N is a multiple of 4 but not a power of 2 (i.e. N = 12, 20, 24, 28, 36 …). [3]
Setting up and analyzing general factorial, two-level factorial, fractional factorial and Plackett–Burman designs. Performing numerical optimizations. Screening for critical factors and their interactions. Analyzing process factors or mixture components. Combining mixture and process variables in designs.
If some main effects are confounded with some 2-level interactions, the resolution is 3. Note: Full factorial designs have no confounding and are said to have resolution "infinity". For most practical purposes, a resolution 5 design is excellent and a resolution 4 design may be adequate. Resolution 3 designs are useful as economical screening ...
The design with 7 factors was found first while looking for a design having the desired property concerning estimation variance, and then similar designs were found for other numbers of factors. Each design can be thought of as a combination of a two-level (full or fractional) factorial design with an incomplete block design. In each block, a ...