Ad
related to: linear electron flow in photosynthesis stepsgenerationgenius.com has been visited by 10K+ users in the past month
- Grades 6-8 Science Videos
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Grades K-2 Science Videos
Get instant access to hours of fun
standards-based K-2 videos & more.
- DIY Science Activities
Do-It-Yourself activities for kids.
Using common classroom materials.
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- Grades 6-8 Science Videos
Search results
Results from the WOW.Com Content Network
The light excites an electron in the pigment P680 at the core of photosystem II, which is transferred to the primary electron acceptor, pheophytin, leaving behind P680 +. The energy of P680 + is used in two steps to split a water molecule into 2H + + 1/2 O 2 + 2e - ( photolysis or light-splitting ).
This chain of electron acceptors is known as an electron transport chain. When this chain reaches PSI, an electron is again excited, creating a high redox-potential. The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3]
This membrane contains an enzyme called NAD(P)H dehydrogenase which transfers electrons in a linear chain to oxygen molecules. [1] This electron transport chain (ETC) within the chloroplast also interacts with those in the mitochondria where respiration takes place. [2] Photosynthesis is also a process that Chlororespiration interacts with. [2]
Linear electron transport through a photosystem ... Electrons may also flow to other electron ... Although some of the steps in photosynthesis are still not ...
Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .
Calvin cycle step 1 (black circles represent carbon atoms) Calvin cycle steps 2 and 3 combined. The enzyme RuBisCO catalyses the carboxylation of ribulose-1,5-bisphosphate, RuBP, a 5-carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. [6] The product of the first step is enediol-enzyme complex that can capture CO 2 ...
At the reaction center, the electrons on the special chlorophyll molecule will be excited and ultimately transferred away by electron carriers. (If the electrons were not transferred away after excitation to a high energy state, they would lose energy by fluorescence back to the ground state, which would not allow plants to drive photosynthesis.)
It is possible to introduce an artificial electron acceptor into the light reaction, such as a dye that changes color when it is reduced. These are known as Hill reagents. These dyes permitted the finding of electron transport chains during photosynthesis. Dichlorophenolindophenol (DCPIP), an example of these dyes, is widely used by experimenters.
Ad
related to: linear electron flow in photosynthesis stepsgenerationgenius.com has been visited by 10K+ users in the past month