enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations (or variational calculus) ... If there are no constraints, the solution is a straight line between the points. However, if the curve is ...

  3. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. . Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function

  4. Beltrami identity - Wikipedia

    en.wikipedia.org/wiki/Beltrami_identity

    The curve has to minimize its potential energy = = + ′, and is subject to the constraint + ′ =, where is the force of gravity. Because the independent variable x {\displaystyle x} does not appear in the integrand, the Beltrami identity may be used to express the path of the string as a separable first order differential equation

  5. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    In the calculus of variations and classical mechanics, the Euler–Lagrange equations [1] are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

  6. Pontryagin's maximum principle - Wikipedia

    en.wikipedia.org/wiki/Pontryagin's_maximum_Principle

    The result was derived using ideas from the classical calculus of variations. [6] After a slight perturbation of the optimal control, one considers the first-order term of a Taylor expansion with respect to the perturbation; sending the perturbation to zero leads to a variational inequality from which the maximum principle follows. [7]

  7. Lagrange multipliers on Banach spaces - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multipliers_on...

    In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite-dimensional constrained optimization problems. The method is a generalization of the classical method of Lagrange multipliers as used to find extrema of a function of finitely many variables.

  8. Calculus of variations - en.wikipedia.org

    en.wikipedia.org/.../Calculus_of_variations

    The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima

  9. Variational analysis - Wikipedia

    en.wikipedia.org/wiki/Variational_analysis

    In mathematics, variational analysis is the combination and extension of methods from convex optimization and the classical calculus of variations to a more general theory. [1] This includes the more general problems of optimization theory, including topics in set-valued analysis, e.g. generalized derivatives.