Search results
Results from the WOW.Com Content Network
The calculus of variations (or variational calculus) ... If there are no constraints, the solution is a straight line between the points. However, if the curve is ...
In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. . Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function
The curve has to minimize its potential energy = = + ′, and is subject to the constraint + ′ =, where is the force of gravity. Because the independent variable x {\displaystyle x} does not appear in the integrand, the Beltrami identity may be used to express the path of the string as a separable first order differential equation
In the calculus of variations and classical mechanics, the Euler–Lagrange equations [1] are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.
The result was derived using ideas from the classical calculus of variations. [6] After a slight perturbation of the optimal control, one considers the first-order term of a Taylor expansion with respect to the perturbation; sending the perturbation to zero leads to a variational inequality from which the maximum principle follows. [7]
In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite-dimensional constrained optimization problems. The method is a generalization of the classical method of Lagrange multipliers as used to find extrema of a function of finitely many variables.
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima
In mathematics, variational analysis is the combination and extension of methods from convex optimization and the classical calculus of variations to a more general theory. [1] This includes the more general problems of optimization theory, including topics in set-valued analysis, e.g. generalized derivatives.