Search results
Results from the WOW.Com Content Network
In this formulation, the set S is the set of all vertices in both polytopes, and the function value f(A) is the negation of the smallest distance between the convex hulls of the two subsets A of vertices in the two polytopes. The combinatorial dimension of the problem is d + 1 if the two polytopes are disjoint, or d + 2 if they have a nonempty ...
Let S 1 be the selling price of wheat and S 2 be the selling price of barley, per hectare. If we denote the area of land planted with wheat and barley by x 1 and x 2 respectively, then profit can be maximized by choosing optimal values for x 1 and x 2. This problem can be expressed with the following linear programming problem in the standard form:
A linear program can be regarded as a special case of a linear-fractional program in which the denominator is the constant function 1. Formally, a linear-fractional program is defined as the problem of maximizing (or minimizing) a ratio of affine functions over a polyhedron ,
We use this example to illustrate the proof of the weak duality theorem. Suppose that, in the primal LP, we want to get an upper bound on the objective 3 x 1 + 4 x 2 {\displaystyle 3x_{1}+4x_{2}} . We can use the constraint multiplied by some coefficient, say y 1 {\displaystyle y_{1}} .
For example, if is non-basic and its coefficient in is positive, then increasing it above 0 may make larger. If it is possible to do so without violating other constraints, then the increased variable becomes basic (it "enters the basis"), while some basic variable is decreased to 0 to keep the equality constraints and thus becomes non-basic ...
However, there is a fractional solution in which each set is assigned the weight 1/2, and for which the total value of the objective function is 3/2. Thus, in this example, the linear programming relaxation has a value differing from that of the unrelaxed 0–1 integer program.
For the rest of the discussion, it is assumed that a linear programming problem has been converted into the following standard form: =, where A ∈ ℝ m×n.Without loss of generality, it is assumed that the constraint matrix A has full row rank and that the problem is feasible, i.e., there is at least one x ≥ 0 such that Ax = b.
In mathematical optimization, the fundamental theorem of linear programming states, in a weak formulation, that the maxima and minima of a linear function over a convex polygonal region occur at the region's corners.